Jeremy Feath Construction Option

University Engineering Building Mid-Atlantic University, United States

(Courtesy of Owner)

Analysis 1: Clean Room Coordination Background **Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results **Cost Comparison** Structural Breadth

Analysis 3: Underground Spring Background **Results Mechanical Breadth**

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Jeremy Feath Construction Option

Location: *Mid-Atlantic, United States*

Size: *95,000 SF*

Project Cost: \$43 million

Delivery Method: *Design-Bid-Build*

Project Duration: Jan. 2013 – Jan. 2015

Owner: *Mid-Atlantic University* **Design Architect:** *Stantec Arch. Inc.* General Contractor: Massaro Const.

Project Overview

University Engineering Building *Mid-Atlantic University, United States*

Analysis 1: Clean Room Coordination Backaround **Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results **Cost Comparison** Structural Breadth

Analysis 3: Underground Spring Background Results **Mechanical Breadth**

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Jeremy Feath Construction Option

Analysis 1: Clean Room Coordination

- *Reorganize project organization chart, along* with creating and analyzing Clean Room coordination schedule & process Analysis 2: Roof System Redesign
- Propose a feasible alternative to the Fully-Adhered TPO roof system

Project Overview

University Engineering Building *Mid-Atlantic University, United States*

Analysis 3: Underground Spring

• *Propose an alternative to the permanent sump* pump to manage the underground spring located underneath the UEB's foundation

Analysis 4: FM Information Delivery

• *Research and study the methods of information* delivery from CM to FM and utilizing that information to manage facilities

Analysis 1: Clean Room Coordination Background **Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results Cost Comparison Structural Breadth

Analysis 3: Underground Spring Background **Results** Mechanical Breadth

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Jeremy Feath Construction Option

Analysis 1: **Clean Room Coordination**

University Engineering Building *Mid-Atlantic University, United States*

Analysis 1: Clean Room Coordination Background **Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results **Cost Comparison** Structural Breadth

Analysis 3: Underground Spring Background Results Mechanical Breadth

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Analysis 1 Clean Room Coordination

Background

University Engineering Building Mid-Atlantic University, United States

Problem Identification:

- Both Massaro and Hodess have separate contracts w/ the Owner
- Coordination for the Clean Room is extremely intensive
 - Scopes of Work
 - Constructability

(Courtesy of Stantec)

Analysis 1: Clean Room Coordination **Background Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results **Cost Comparison** Structural Breadth

Analysis 3: Underground Spring Background **Results Mechanical Breadth**

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Analysis 1 Clean Room Coordination

Original Contractual Obligations:

- Hodess used for Design Coordination, contracted to Owner at time
- Massaro chosen as General Contractor, contracted to Owner
- Owner unsuccessfully attempted to transfer Hodess' contract to Massaro

Original Design-Bid-Build *Hodess contract w/ Owner* (Courtesy of Jeremy Feath)

Project Organization

University Engineering Building *Mid-Atlantic University, United States*

Analysis 1: Clean Room Coordination Background **Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results **Cost Comparison** Structural Breadth

Analysis 3: Underground Spring Background **Results Mechanical Breadth**

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Analysis 1 Clean Room Coordination

Original Contractual Obligations:

- Hodess used for Design Coordination, contracted to Owner at time
- Massaro chosen as General Contractor, contracted to Owner
- Owner unsuccessfully attempted to transfer Hodess' contract to Massaro

Original Design-Bid-Build Hodess contract w/ Owner

(Courtesy of Jeremy Feath)

Project Organization

University Engineering Building *Mid-Atlantic University, United States*

New Contractual Obligations:

- Hodess has preconstruction contract with Owner
- Massaro awarded bid, contract with the Owner
- *Hodess now acts as a subcontractor, construction* contract with Massaro

(Courtesy of Jeremy Feath)

Hodess contract w/ Massaro

Analysis 1: Clean Room Coordination Background **Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results Cost Comparison Structural Breadth

Analysis 3: Underground Spring Background Results Mechanical Breadth

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Analysis 1 Clean Room Coordination

(Courtesy of Jeremy Feath)

Clean Room Coordination

University Engineering Building *Mid-Atlantic University, United States*

Problem Areas:

- Clean Room Light Fixtures
- Mezzanine AHUs
- Clean Room Ceiling Grid •

(Courtesy of Stantec)

(Courtesy of Jeremy Feath)

Analysis 1: Clean Room Coordination Background **Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results **Cost Comparison** Structural Breadth

Analysis 3: Underground Spring Background Results **Mechanical Breadth**

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Analysis 1 Clean Room Coordination

ID	Task Name	Duration	Start	Finish		Sep 16, '12	Sep 30, '12	Oct 14, '12		Oct 28,	'12		N	ov 11, '1	2	
					F	T S W	S T M	F T S	W	S	T	м	F	Т	S	W
1	Awarded UEB Project	0 days	Mon 9/17/12	Mon 9/17/12	/17	9/17										
2	Finalize Subcontractor	4 days	Mon 9/17/12	Thu 9/20/12	9/17	9/20										
	Contracts															
3	Preliminary Coordination	1 day	Fri 9/21/12	Fri 9/21/12		9/21 🎽 9/21										
4	3D Cooridnation Model	20 days	Mon 9/24/12	Fri 10/19/12		9/24										
5	Mechanical Model	4 wks	Mon 9/24/12	Fri 10/19/12		9/24										
6	Electrical Model	4 wks	Mon 9/24/12	Fri 10/19/12		9/24										
7	Plumbing Model	4 wks	Mon 9/24/12	Fri 10/19/12		9/24										
8	Structural Model	4 wks	Mon 9/24/12	Fri 10/19/12		9/24										
9	Clean Room Model	4 wks	Mon 9/24/12	Fri 10/19/12		9/24										
10	Combine Models	5 days	Mon 10/22/12	2Fri 10/26/12				10/22		10/26						
11	Run Clash Detection	5 days	Mon 10/29/12	2 Fri 11/2/12					10/2	9	11	./2				
12	Clash Detection Meeting(s)	10 days	Mon 10/29/12	Fri 11/9/12					10/2	9)] 11,	/9		
13	Clean Room Coordination	25 days?	Mon 11/12/1	Fri 12/14/12								11	/12			
14	CR Ceiling Grid Hangars	5 days	Mon 11/12/12	Fri 11/16/12								1	1/12] 11/ 1	6
15	MEP Transitions	10 days	Mon 11/19/12	Fri 11/30/12										11	L/19 🍆	
16	Mechanical Fittings	5 days	Mon 12/3/12	Fri 12/7/12												
17	Electrical Equipment	5 days	Mon 12/10/12	2Fri 12/14/12												
18	Clash Fixes	25 days	Mon 11/12/12	2Fri 12/14/12								1	1/12			
19	Designer Coordination on Potential RFIs	25 days	Mon 11/12/12	Fri 12/14/12								1	1/12			
20	Determine Long Lead items	25 days	Mon 11/12/12	Fri 12/14/12								1	1/12			
21																

(Courtesy of Jeremy Feath)

Clean Room Coordination

University Engineering Building *Mid-Atlantic University, United States*

Problem Areas:

- Clean Room Light Fixtures
- Mezzanine AHUs
- Clean Room Ceiling Grid •

(Courtesy of Stantec)

Tools:

- 3D Model Coordination
- Hodess Precon experience
- Early Problem Identification

(Courtesy of Jeremy Feath)

Savings:

- Less RFIs, COs
- Fewer Constructability Problems
- Potential Schedule Savings

Analysis 1: Clean Room Coordination Background **Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results Cost Comparison Structural Breadth

Analysis 3: Underground Spring Background **Results** Mechanical Breadth

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Jeremy Feath Construction Option

Analysis 2: Roof System Redesign

University Engineering Building *Mid-Atlantic University, United States*

Analysis 1: Clean Room Coordination Background Project Organization Results Coordination Results

Analysis 2: Roof System Redesign Background Schedule Results Cost Comparison Structural Breadth

Analysis 3: Underground Spring Background Results Mechanical Breadth

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Analysis 2 Roof System Redesign

Lab Roof: 14,000 SF - Office Roof: 10,000 SF

Background

University Engineering Building Mid-Atlantic University, United States

Analysis 1: Clean Room Coordination Background **Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results Cost Comparison Structural Breadth

Analysis 3: Underground Spring Background **Results** Mechanical Breadth

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Analysis 2 Roof System Redesign

Offic	
Offi	
Off	ĺ
Off	
Off	
Off	

Background

University Engineering Building *Mid-Atlantic University, United States*

Original Project Schedule

ing Roof & E	xterior Enclosure	133	133		11-Nov-13	19-May-14	
		133	133		11-Nov-13	19-May-14	
- Roof		61	61		12-Dec-13	10-Mar-14	
-30000	Roof Blocking - Lab Roof	5	5	0%	12-Dec-13	18-Dec-13	
-30010	Roof Drains - Lab Roof	4	4	0%	13-Dec-13	18-Dec-13	
-30020	Roofing System - Lab Roof	15	15	0%	11-Feb-14	03-Mar-14	
-30030	Lightning Protection - Lab Roof	5	5	0%	04-Mar-14	10-Mar-14	
-30035	Install Roof Crane	5	5	0%	04-Mar-14	10-Mar-14	

Lab Roof Activities – Total Duration: 61 days

e		101	101		25-Nov-13	17-Apr-14
e - Roof		30	30		07-Jan-14	17-Feb-14
30000	Roof Blocking - Office Roof	5	5	0%	07-Jan-14	13-Jan-14
30010	Roof Drains - Office Roof	4	4	0%	08-Jan-14	13-Jan-14
30020	Roofing System - Office Roof	20	20	0%	14-Jan-14	10-Feb-14
30030	Lightning Protection - Office Roof	5	5	0%	11-Feb-14	17-Feb-14

Office Roof Activities – Total Duration: 30 days

(Courtesy of Massaro)

Analysis 1: Clean Room Coordination **Background Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results **Cost Comparison** Structural Breadth

Analysis 3: Underground Spring Background Results **Mechanical Breadth**

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Analysis 2 Roof System Redesign

Offic	
Offi	
Off	ĺ
Off	
Off	
Off	

Background

University Engineering Building *Mid-Atlantic University, United States*

Original Project Schedule

ing Roof & E	xterior Enclosure	133	133		11-Nov-13	19-May-14
		133	133		11-Nov-13	19-May-14
- Roof		61	61		12-Dec-13	10-Mar-14
-30000	Roof Blocking - Lab Roof	5	5	0%	12-Dec-13	18-Dec-13
-30010	Roof Drains - Lab Roof	4	4	0%	13-Dec-13	18-Dec-13
-30020	Roofing System - Lab Roof	15	15	0%	11-Feb-14	03-Mar-14
-30030	Lightning Protection - Lab Roof	5	5	0%	04-Mar-14	10-Mar-14
-30035	Install Roof Crane	5	5	0%	04-Mar-14	10-Mar-14

Lab Roof Activities – Total Duration: 61 days

e		101	101		25-Nov-13	17-Apr-14
ce - Roof		30	30		07-Jan-14	17-Feb-14
30000	Roof Blocking - Office Roof	5	5	0%	07-Jan-14	13-Jan-14
30010	Roof Drains - Office Roof	4	4	0%	08-Jan-14	13-Jan-14
30020	Roofing System - Office Roof	20	20	0%	14-Jan-14	10-Feb-14
30030	Lightning Protection - Office Roof	5	5	0%	11-Feb-14	17-Feb-14

Office Roof Activities - Total Duration: 30 days

(Courtesy of Massaro)

Roof System Problems:

- Cold-Weather Constructability Difficult
- Increased General Conditions Costs
- Delayed Interior Work (Fireproofing, MEP Rough-Ins)

(Courtesy of Jeremy Feath)

Analysis 1: Clean Room Coordination **Background Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results **Cost Comparison** Structural Breadth

Analysis 3: Underground Spring Background Results **Mechanical Breadth**

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Analysis 2 Roof System Redesign

Proposed Solution:

Firestone TPO InvisiWeld System

Improved Cold-Weather *Constructability*

Meets Owner Approval & **Contractor Experience**

Background

University Engineering Building *Mid-Atlantic University, United States*

(Courtesy of Firestone Building Products)

(Courtesy of Firestone Building Products)

Project Overview

- Analysis 1: Clean Room Coordination Background **Project Organization Results Coordination Results**
- Analysis 2: Roof System Redesign Background Schedule Results Cost Comparison Structural Breadth
- Analysis 3: Underground Spring Background **Results** Mechanical Breadth
- Analysis 4: FM Information Delivery
- Final Recommendations
- Acknowledgements

InvisiWeld Plate Weld Durations

Location	Area (SF)	4'x8' Board (SF)	# Boards	Avg. # of Plates	Total Plates	# Plates/Hr.	Total Hrs.	Total Days
Lab	14000	32	437.5	14	6125	300	20.42	2.55
Office	10000	32	312.5	14	4375	300	14.58	1.82

Note: 300 plates/hr. based on Firestone literature

Roof System Duration Comparison

Roof System	Lab Duration	Office Duration	Total Duration
Fully-Adhered TPO	61	30	61
InvisiWeld	35	25	40
Built-Up Roof	51	47	65

Schedule Results

University Engineering Building *Mid-Atlantic University, United States*

Project Overview

- Analysis 1: Clean Room Coordination Background **Project Organization Results Coordination Results**
- Analysis 2: Roof System Redesign Background Schedule Results Cost Comparison Structural Breadth
- Analysis 3: Underground Spring Background **Results** Mechanical Breadth
- Analysis 4: FM Information Delivery
- **Final Recommendations**
- Acknowledgements

InvisiWeld Plate Weld Durations

Location	Area (SF)	4'x8' Board (SF)	# Boards	Avg. # of Plates	Total Plates	# Plates/Hr.	Total Hrs.	Total Days
Lab	14000	32	437.5	14	6125	300	20.42	2.55
Office	10000	32	312.5	14	4375	300	14.58	1.82

Note: 300 plates/hr. based on Firestone literature

Roof System Duration Comparison

Roof System	Lab Duration	Office Duration	Total Duration
Fully-Adhered TPO	61	30	61
InvisiWeld	35	25	40
Built-Up Roof	51	47	65

Schedule Results

University Engineering Building *Mid-Atlantic University, United States*

InvisiWeld Construction Schedule

Project Overview

Analysis 1: Clean Room Coordination Background **Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results Cost Comparison Structural Breadth

Analysis 3: Underground Spring Background **Results** Mechanical Breadth

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Fully Adhered TPO Membrane Roof Estimate										
Material	Quantity	Unit	Cost/Unit	Total Cost						
TPO Membrane (80 mil)	24000	SF	\$1.03	\$24,720.00						
Multipurpose Adhesives	40	600 SF	\$145.00	\$5,800.00						
Expansion Joint	800	LF	\$2.00	\$1,600.00						
1/2" Protection Board	24000	SF	\$0.53	\$12,720.00						
(2) 2" Rigid Insulation	24000	SF	\$0.65	\$15,600.00						
Single-Ply Memb. Sealants	100	1 gal. Pail	\$75.00	\$7,500.00						
Sealant Primers	100	1 gal. Pail	\$67.00	\$6,700.00						
Sheet Flashing	24	100 SF	\$251.00	\$6,024.00						
Bonding Adhesive	54	450 SF Pail	\$145.00	\$7,830.00						
Fasteners	25	5" HD 1000/Pail	\$190.00	\$4,750.00						
Metal Termination Bar	80	10 LF	\$7.00	\$560.00						
Total				\$93,804.00						

Cost Comparison

University Engineering Building *Mid-Atlantic University, United States*

Original General Conditions Estimate

OTAL		\$1,610,845.00
OTAL CONSTRUCTION COSTS * 6%		\$1,962,000.00
COST DIFFERENCE		\$351,155.00
6 DIFFERENCE		17.90

Revised General Conditions Estimate

OTAL		\$1,618,545.00
OTAL CONSTRUCTION COSTS * 6%		\$1,962,000.00
OST DIFFERENCE		\$343,455.00
DIFFERENCE		17.51

Fully-Adhered TPO System General Conditions Increase - \$7,700

Increase in Temporary Heating & Enclosure:

- Protect Penthouse Equipment & Stored Materials
- Enable interior rough-in work to continue

Note: The increase in GC does not occur for BUR or InvisiWeld

Project Overview

Analysis 1: Clean Room Coordination Background **Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results Cost Comparison Structural Breadth

Analysis 3: Underground Spring Background **Results** Mechanical Breadth

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Fully Adhe	red TPO M	embrane Roof Esti	mate	
Material	Quantity	Unit	Cost/Unit	Total Cost
TPO Membrane (80 mil)	24000	SF	\$1.03	\$24,720.00
Multipurpose Adhesives	40	600 SF	\$145.00	\$5,800.00
Expansion Joint	800	LF	\$2.00	\$1,600.00
1/2" Protection Board	24000	SF	\$0.53	\$12,720.00
(2) 2" Rigid Insulation	24000	SF	\$0.65	\$15,600.00
Single-Ply Memb. Sealants	100	1 gal. Pail	\$75.00	\$7,500.00
Sealant Primers	100	1 gal. Pail	\$67.00	\$6,700.00
Sheet Flashing	24	100 SF	\$251.00	\$6,024.00
Bonding Adhesive	54	450 SF Pail	\$145.00	\$7,830.00
Fasteners	25	5" HD 1000/Pail	\$190.00	\$4,750.00
Metal Termination Bar	80	10 LF	\$7.00	\$560.00
Total				\$93,804.00

Asph (2) 2 Cove

Cost Comparison

University Engineering Building Mid-Atlantic University, United States

Tra	ditional B	uilt-Up Roof		
Material	Quantity	Unit	Cost/Unit	Total Cost
Membrane (4 Layers)	96000	SF (1 - Layer)	\$0.85	\$81,600.00
alt	30	ton	\$820.00	\$24,600.00
Rigid Insulation	24000	SF	\$0.65	\$15,600.00
Board	24000	SF	\$0.53	\$12,720.00
				\$134,520.00

l	Labor Cost E	stimate		
Roof Type	Duration (days)	Hourly Rate	Daily Rate	Total Cost
-Adhered TPO	61	\$100.00	\$800.00	\$48,800.00
-Up Roof	65	\$100.00	\$800.00	\$52,000.00
iWeld TPO	40	\$100.00	\$800.00	\$32,000.00

Project Overview

Analysis 1: Clean Room Coordination Background **Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results Cost Comparison Structural Breadth

Analysis 3: Underground Spring Background **Results** Mechanical Breadth

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Fully Adhe	red TPO M	embrane Roof Esti	mate	
Material	Quantity	Unit	Cost/Unit	Total Cost
TPO Membrane (80 mil)	24000	SF	\$1.03	\$24,720.00
Multipurpose Adhesives	40	600 SF	\$145.00	\$5,800.00
Expansion Joint	800	LF	\$2.00	\$1,600.00
1/2" Protection Board	24000	SF	\$0.53	\$12,720.00
(2) 2" Rigid Insulation	24000	SF	\$0.65	\$15,600.00
Single-Ply Memb. Sealants	100	1 gal. Pail	\$75.00	\$7,500.00
Sealant Primers	100	1 gal. Pail	\$67.00	\$6,700.00
Sheet Flashing	24	100 SF	\$251.00	\$6,024.00
Bonding Adhesive	54	450 SF Pail	\$145.00	\$7,830.00
Fasteners	25	5" HD 1000/Pail	\$190.00	\$4,750.00
Metal Termination Bar	80	10 LF	\$7.00	\$560.00
Total				\$93,804.00

Cove Tota

Cost Comparison

University Engineering Building *Mid-Atlantic University, United States*

Tra	ditional B	uilt-Up Roof		
Material	Quantity	Unit	Cost/Unit	Total Cost
Membrane (4 Layers)	96000	SF (1 - Layer)	\$0.85	\$81,600.00
lt	30	ton	\$820.00	\$24,600.00
Rigid Insulation	24000	SF	\$0.65	\$15,600.00
Board	24000	SF	\$0.53	\$12,720.00
				\$134,520.00

	Labor Cost E	stimate		
Roof Type	Duration (days)	Hourly Rate	Daily Rate	Total Cost
-Adhered TPO	61	\$100.00	\$800.00	\$48,800.00
-Up Roof	65	\$100.00	\$800.00	\$52,000.00
iWeld TPO	40	\$100.00	\$800.00	\$32,000.00

Inv	isiWeld Tl	PO Membrane Ro	of
Material	Quantity	Unit	Cost/Unit
TPO Membrane (80 mil)	24000	SF	\$1.03
Expansion Joint	800	LF	\$2.00
1/2" Protection Board	24000	SF	\$0.53
(2) 2" Rigid Insulation	24000	SF	\$0.65
Single-Ply Memb. Sealants	100	1 gal. Pail	\$75.00
Sealant Primers	100	1 gal. Pail	\$67.00
Sheet Flashing	24	100 SF	\$251.00
Fasteners	25	5" HD 1000/Pail	\$190.00
InvisiWeld Plates	21	500 Pail	\$90.00
InvisiWeld Machine	1	EA	\$7,500.00
T-Patches	5250	EA	\$0.44
Pipe Boots	10	EA	\$23.00
Total			

Total Cost
\$24,720.00
\$1,600.00
\$12,720.00
\$15,600.00
\$7,500.00
\$6,700.00
\$6,024.00
\$4,750.00
\$1,890.00
\$7,500.00
\$2,310.00
\$230.00
\$91,544.00

Total Cost Savings:

\$26,760.00

Analysis 1: Clean Room Coordination Background **Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results Cost Comparison Structural Breadth

Analysis 3: Underground Spring Background Results Mechanical Breadth

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Analysis 2 Roof System Redesign

Purpose:

• To study the affect increased roof load has on metal decking

Original Deck: 1-1/2", 20 gauge

Roof Deck Study

University Engineering Building *Mid-Atlantic University, United States*

1.5	Β,	BI, I	BA,	BI	A , E	SV		1						
Maximu	n Sheet	Length 4	42'-0					Sec. Con	1	-				
Extra ch	arge for	lengths i	under 6'-	0				1	P	-				1000000
FM Glob	al Appro	oved ²						1	1	P	21	/ 1	1	
									F 1	and the second	-		/	77
										1	-			Q
						6*	-12/1			-12-		1	-	P
					5			~~	~~	٦ <u>,</u>	terlocking	side lan	0	
						\square	$ \frown $				ctual detai	to show		11111
	•				1 I		, 0	-	0	Ĩ				
					1.		-30° OR :	36*						
SECTIC	N PRO	PERTIES	5											
Duck		Design					Section Pro	perties						
type		thickness in.	pst		l _p	8	,	1 _m		Sn	ibs/ft		ry kosi	
B24		0.0239	1.4	6	0.107	in 0.1	/ft 20	in ⁴ /ft 0.135	1	n ³ /ft	2634	_	60	
B22		0.0295	1.7	8	0,155	0,1	86	0.183	0	1.192	1818		33	
B20		0.0358	2.1	4	0.201	0.2	34	0.222	0	.247	2193		33	
B19 B18		0.0418	2.4	2	0.246	0.3	18	0.260	0	.327	2546		33	
B16		0.0598	3.5	4	0.373	0.4	08	0.373	0	.411	3578		33	
ACOUS	TICAL	Abso	ATION ption Coeffi	cient	10000 N	oise Reduc	ion	Type capa the r	B (wide rib) icity per poun ieed for die-s) deck provis id of steel utili iet ends.	des excellent zed, and its n	structural lo estable desig	ad carrying n eliminates	
1.5BA, 1.	5BIA .11	.18	,66 1.02	0.61	0.33	0,60		1" or	more rigid in untical dask (sulation is re	quired for Typ	e B deck.	o stouchures	
¹ Source: F Test was a 2 inch pol	Riverbank A conducted v yisocyanura	coustical La vith 1.50 pcf ite foam insu	boratories. fiberglass b lation for th	atts and e SDI.				such desir the k	as auditoriu able. Acousti ad carrying	properties ar	and theatre are located i e negligibly a	where sour the vertical fected (less)	nd control is webs where than 5%).	
								rib o	, non-organic penings to at	sorb up to 6	0% of the sou	nd striking th	le deck.	
VERTI	CALL	OADS	FOR T	YPE 1.	5B			Batt	s are field ins	tailed and ma	ay require sep	aration.		
No. of	Deck	SDI Const.	5.0	6.0	Alk	wable rotal (Span (ft	in.) ctr to ctr c	f supports	o or 1 inch (P	er)	0.6	10.0	
opans	B24	4'-8	116/56	95/42	80/32	68/26	59/20	51/17	45 / 14	40 / 11	35/10	32/8	29/7	
36	822 B20	5-7 6'-5	98/81 123/105	81/61 102/79	68/47 86/61	58/37 73/48	50/30 63/38	44/24 55/31	38/20 48/26	34 / 17 43 / 21	30/14 38/18	27 / 12 34 / 15	25/10 31/13	
	B19 B18	7-1	146 / 129	121/97	101/75	86/59 99/69	74/47 85/55	65/38	57/31 65/37	51/26 58/31	45/22	40/19	36716 42/19	
	B16	8-8	215/196	178/147	149/113	127 / 89	110/71	96/58	84 / 48	74/40	66/34	60/29	54/24	
	824	5'-10 6'-11	124/153 100/213	103 / 115 83 / 160	86/88 70/124	74/70 59/97	64/56 51/76	56745 45763	49/37 39/52	43/31 35/43	39/26 31/37	35/22 28/31	31 / 19 25 / 27	
	DZZ	7-9 8-5	128/267	106/201	89/155	76/122	66/97	57/79	51/65	45/64	40/48	36/39	32/33	
2	B20 B10		1001320	140/277	118/213	101 / 158	87/134	76/109	67/90	59/75	53/63	48/54	43/46	
2	B20 B19 B18	9'-1	109/309	1401 811					1 . BA 7 115	1 74/06	66/81	607.69	54/59	
2	B20 B19 B18 B16 B24	9'-1 10'-3 5'-10	213/471	176/354	149/273 108/69	127/214 92/55	110/172 79/44	69/35	61/29	54/24	48/21	43/17	39/15	
2	B20 B19 B18 B16 B24 B24 B20	9'-1 10'-3 5'-10	169 / 369 213 / 471 154 / 120	178 / 354 128 / 90	149/273 108/69	127/214 92/55 74/76 95/95	110/172 79/44 64/61 82/76	69/35 56/50 72/69	61/29 49/41 63/51	54/24 43/34 56/49	48/21 39/29 50/36	43/17 35/24	39/15 31/21 40/28	
2	B20 B19 B18 B16 B24 B20 B20 B20 B10	9'-1 10'-3 5'-10 0'-11 7'-9 7'-9	169 / 365 213 / 471 154 / 120 159 / 209 199 / 209	176 / 354 128 / 90 132 / 157	149 / 273 108 / 69 111 / 121 120 / 146	127 / 214 92 / 55 74 / 76 95 / 95 111 / 114	110/172 79/44 64/61 82/76 96/91	957140 69735 56750 72762 84774	61 / 29 49 / 41 63 / 51 74 / 61	54 / 24 43 / 34 56 / 43 65 / 51	48/21 39/29 50/36 58/43	43/17 35/24 45/31 52/37	39 / 15 31 / 21 40 / 28 47 / 31	

TPO vs. Garden Roof

	ab Koot Calculations University Engineering Building	ereny teath
	Built-Up + TPO Roots:	
	WTL = 2+8 + 30 + 30 + 30 = 100 psf @ 5'-4" span, 3 or more	
	Try 1.58 Vulcroft Roof Deck	
-	· For max construction spon, need B24 -> 5'-10" (Table) ≥ 5'-4" (Gin	en)::OK
	· Will for strength, B24 carries 128 psf > 100 pof (Given) : Com	alition
	d	oes not Contre
	· Max load for 4240, B24 carries 90 psf for 4240, 90 × 240 = 120 p Condition does not Control	st > 100pst
	Use 824 Deck	
	Use B24 Deck Garolin Roof:	
	Use B24 Deck Gardin Roof: WTL = 2+4+100+30+30 + 166 porf @ 5'-4" span, 3 or more	
	Use B24 Deck <u>Garolin Roof:</u> W _{TL} = 2+4+100+30+30 + 30 + 166 porf @ 5'-4" span, 3 or more Try 1.5 B. Vulcraft Roof Deck	
	Use 824 Deck <u>Garden Roof</u> : $W_{TL} = 2+4+100+30+50 + 166 \text{ porf @ 5'-4" span, 3 or more}$ Try 1.5 B Vulcraft Roof Deck *For max construction span, need 818 $\rightarrow 9'-1^*$ (Table) $\geq 5'-4^*$ (Gin	л):: OK
	Use B24 Deck Gardin Roof: $W_{TL} = 2+4+100+30+30+30=166 \text{ psf} @ 5'-4^{n} \text{ span, 3 or more}$ Try 1.5 B Vulcraft Roof Deck *For max construction span, need B18 $\rightarrow 9'-1^{*}$ (Table) $\geq 5'-4^{*}$ (Give : WTL for strength, B18 carries 174 psf > 166 psf (Given): Condition of	n): OK es not Contro
	Use 824 Deck <u>Garden Roof</u> : $W_{TL} = 2 + 4 + 100 + 30 + 30 = 166 \text{ port @ 5'-4" span, 3 or more}$ Try 1.5 B Vuleraft Roof Deck *For max construction span, need 818 $\rightarrow 9'-1$ (Table) $\geq 5'-4^{4}$ (Gin WTL for strength, B18 carries 174 psf > 166 psf (Given) \therefore Condition of Max load for 5/240, B18 carries 217 psf for 5/240, 217 × $\frac{240}{180} \approx 289 \times 10^{11}$ Conduction of as not control	n):. OK es not Contro 186 psf

Office Roof Calculations University Engineering Building Jeremy Feath Built - Up Roof & TPO Roof : WT1 = 2 + 8 + 30 + 10 + 30 = 80 pst @ 5'-0" span, 3 or more Try 1.58 Vuleraft Roof Deck · For max construction span, need 824 -> 5'-10" (Table) = 5'-0. (Given) : OK · With for strength, B24 carries 154 psf = 80 psf (Given) : Condition does not Control · Max (cood for 1/240, 824 carries 120 psf. 120 × 780 = 160 psf > 20 psf · Condition does not control Use B24 Deck Garden Roof: WTL · 2+4 + 100 + 10 + 30 = 146 psf @ 5'-0" span, 3 or more Try 1.58 Vulcraft Roof Deck · For max construction span, need B24 - 5'-10" (Table) = 5'-0" (Given) : OK " WTL For strength, B24 carries 154 psf > 146 psf (Given) .. Condition does not Control - Max loool for 1/240, B24 carries 120 psf, 120 × 240 = 160 psf > 146 psf .: Condition Joes not control Use B24 Deck

Analysis 1: Clean Room Coordination Background **Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results Cost Comparison Structural Breadth

Analysis 3: Underground Spring Background Results Mechanical Breadth

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Jeremy Feath Construction Option

Analysis 3: Underground Spring

University Engineering Building *Mid-Atlantic University, United States*

Analysis 1: Clean Room Coordination Background **Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results **Cost Comparison** Structural Breadth

Analysis 3: Underground Spring Background **Results** Mechanical Breadth

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Analysis 3 Underground Spring

Problems:

- Spring & Rain delayed construction during Excavation & Foundations
- Spring was NOT discovered during GeoTech • Investigation

(Courtesy of Jeremy Feath)

Proposed Solution:

Background

University Engineering Building *Mid-Atlantic University, United States*

Addition of Waterproofing Membrane to Lab *Foundation Wall w/ Sump Pump backup*

(Courtesy of Stantec)

Analysis 1: Clean Room Coordination Background **Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results **Cost Comparison** Structural Breadth

Analysis 3: Underground Spring Background Results Mechanical Breadth

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Analysis 3 Underground Spring

Problems:

- Spring & Rain delayed construction during Excavation & Foundations
- Spring was NOT discovered during GeoTech • Investigation

Proposed Solution:

-CHEN GARDO DN PLAN PREPARED IN TRIBLE DATED 00,722,707 DN SHEET 1 NAJ DAVEDALE CARFUE MOTEL 148 PROJECT FLAN ING PREPARE

Background

University Engineering Building *Mid-Atlantic University, United States*

 Addition of Waterproofing Membrane to Lab *Foundation Wall w/ Sump Pump backup*

Project Team Solution – Permanent Sump Pump

Material	Quantity	Unit	Cost per Unit	Total Cost
Sump Pump (Temporary)	1	EA	\$120.00	\$120.00
Sump Pump (Permanent)	1	EA	\$215.00	\$215.00
2" PVC	160	LF	\$12.09	\$1,934.40
Check Valve	1	EA	\$37.25	\$37.25
90° Elbow	1	EA	\$46.86	\$46.86
45° Elbow	3	EA	\$36.48	\$109.44
Total				\$2,462.95

(Const. DWGs Courtesy of Stantec) (Photos & Table Courtesy of Jeremy Feath)

Sump Pump System Estimate

Analysis 1: Clean Room Coordination Background Project Organization Results Coordination Results

Analysis 2: Roof System Redesign Background Schedule Results Cost Comparison Structural Breadth

Analysis 3: Underground Spring Background Results Mechanical Breadth

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Analysis 3 Underground Spring

Underground Spring Solution:

Tamko TW-60 Waterproofing Membrane

(Courtesy of Tamko)

University Engineering Building Mid-Atlantic University, United States

(Const. DWGs Courtesy of Stantec)(Photos & Table Courtesy of Jeremy Feath)

Analysis 1: Clean Room Coordination Background **Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results **Cost Comparison** Structural Breadth

Analysis 3: Underground Spring Background Results Mechanical Breadth

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Analysis 3 Underground Spring

Underground Spring Solution:

Tamko TW-60 Waterproofing Membrane

(Courtesy of Tamko)

Results

University Engineering Building *Mid-Atlantic University, United States*

Cost Estimate Impact

Tamko TW-60 Material Foundation Wall Costs

Level 0 & Mezzanine (Lab)	Roll Width (in.)	Roll Size	Area Coverage	Wall Area	# Rolls Needed	Cost per Roll	Total Cost
N Line 1 - 6	39.375	39.375" x 61'	200	3404.88	18	\$292.00	\$5,256.00
6 Line N - G	39.375	39.375" x 61'	200	4173.36	21	\$292.00	\$6,132.00
G Line 1 - 6	39.375	39.375" x 61'	200	2496.96	13	\$292.00	\$3,796.00
1 Line G - N	39.375	39.375" x 61'	200	2210.18	12	\$292.00	\$3,504.00
Total							\$18,688.00

Note: Labor Costs do NOT change

Total System Cost - \$21,151.00

Material	Quantity	Unit	Cost per Unit	Total Cost
Sump Pump (Temporary)	1	EA	\$120.00	\$120.00
Sump Pump (Permanent)	1	EA	\$215.00	\$215.00
2" PVC	160	LF	\$12.09	\$1,934.40
Check Valve	1	EA	\$37.25	\$37.25
90° Elbow	1	EA	\$46.86	\$46.86
45° Elbow	3	EA	\$36.48	\$109.44
Total				\$2,462.95

• Cost difference made up from Roof System change • System is necessary to combat the Spring in combination with heavy rainfall

(Const. DWGs Courtesy of Stantec) (Table s Courtesy of Jeremy Feath)

Sump Pump System Estimate

Analysis 1: Clean Room Coordination Background **Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results **Cost Comparison** Structural Breadth

Analysis 3: Underground Spring Background Results Mechanical Breadth

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Analysis 3 Underground Spring

Underground Spring Solution:

Tamko TW-60 Waterproofing Membrane

(Courtesy of Tamko)

Results

University Engineering Building *Mid-Atlantic University, United States*

Schedule Impact

Foundation Waterproofing Membrane Durations

Level 0 & Mezzanine (Lab)	LF Coverage	Wall Height	Daily Output (LF)	Daily Output (SF)	Coverag e Area	Duration
N Line 1 - 6	141.87	24	80	1920	3404.88	1.77
6 Line N - G	173.89	24	80	1920	4173.36	2.17
G Line 1 - 6	104.04	24	80	1920	2496.96	1.30
1 Line G - N	157.87	14	80	1120	2210.18	1.97
Total						7.22

Total Schedule Change = +4 days

Roughly 1 extra day per Wall section

(Const. DWGs Courtesy of Stantec) (Table & Schedule Courtesy of Jeremy Feath)

9	🗆 N Line 1 - 6	27 days	Tue 4/2/13	Wed 5/8/13
10	Bituminus Seal	1 day	Tue 4/2/13	Tue 4/2/13
11	Excavate Grade Beam	2 days	Tue 4/2/13	Wed 4/3/13
12	Place Geo-Foam	1 day	Wed 4/3/13	Wed 4/3/13
13	FRP Grade Beams	4 days	Thu 4/4/13	Tue 4/9/13
14	FRP Walls N Line 1 - 3	2 days	Fri 5/3/13	Mon 5/6/13
15	Install Sheet Waterproofing N Line 1 - 3	1 day	Tue 5/7/13	Tue 5/7/13
16	FRP Walls N Line 3 - 6	2 days	Mon 5/6/13	Tue 5/7/13
17	Install Sheet Waterproofing N Line 3 - 6	1 day	Wed 5/8/13	Wed 5/8/13

- Each Wall section follows same pattern
- section
- erection

• Duration from Table, broken down based on # of pours for the Wall

• Schedule increase acceptable, work can be completed around steel

Analysis 1: Clean Room Coordination Background **Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results **Cost Comparison** Structural Breadth

Analysis 3: Underground Spring Background Results Mechanical Breadth

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Analysis 3 Underground Spring

Ideal for applications wi small diameter sump pit	th s	Si de te
Typical Application	Basement sumps, dewatering, light effluent, water transfer	TK
Capacities	up to 62 GPM (235 LPM)	Ca
Heads	up to 32 ft. (9.8 m)	He
Electrical	1/3 HP, 115V, 1ø, 9.8A, 60Hz; 1/2 HP, 115V, 1ø, 12A, 60Hz;	Ele
Motor	1/3 or 1/2 HP shaded pole with themal overload, 1550 RPM	
Continuous Liquid Temperature	130°F (54°C)	_
Minimum Recommended Sump Diameter	10" (25.4 cm)	Mi
Automatic Operation	2-Pole float switch	Au
Materials of Construction	Cast iron	Ma
Impeller	Thermoplastic, vortex type	Im
Discharge Size	1-1/2" NPT (38.1 mm)	D
Solids Handling	1/2" (12.7 mm)	<u>\$</u>
Power Cord	10' or 20', 16/3, SJTW-A, SJTW	Po
2-pole switch design permits e 0i-filled motor for maximum h Thermal overload protection, si Cathon/ceamic seal protect Lubritated ball bearings and Easy field-sentceable pump, in Anti-airlock hole in base reduc	aver thin sump pots as small as 10° in diameter ant dissipation and display the starting switch or relay motor against water leaka ge uits easi for longer sentice life att easi for longer sentice life its extent volute base, switch and power cord es labor	
Performance		P 24 18 12 6

SUMP PUMPS

USA Wholesale/Residential Products • 888-957-8677 • Orders Fax: 800-426-9446 Canada Kitchener, Ontario • 519-896-2163 • Orders Fax: 519-896-6337 HYD10157 Rev12/10

Technical Data:

- System Capacity = 30 GPM
- *Total Dynamic Head* = 14'
 - Static Head = 10'
 - Friction Head = 3.27

(Actual + Equivalent)(Friction Loss)

100

$$\frac{(150+30.8)(1.81)}{100} = 3.27$$

Sizing of a Sump Pump

University Engineering Building *Mid-Atlantic University, United States*

22/	
sump pump high up to 194°f	WITEBOURIE

	water transfer
	up to 45 GPM (170 LPM)
	up to 21 ft. (6.4 m)
	115V, 1ø, 12.0 FLA, 60Hz
	1/3 HP shaded pole with thermal overload, 1550 RPM
emperature	194 °F (90°C) with switch; 200°F (93°C) manual
nded	18" (457.2 mm)
I	Wide-angle float switch (manual available)
ction	Cast iron
	Cast iron
	1-1/2" NPT (38.1 mm)
	3/4"(19.1 mm)
	20', 16/3, SJOOW-A/SJOW
atures	
ceable	
or bearing lub	rication and maximum heat dissipation
and the second second	hadad note motor with no starting putch arrels

d protection, shaded pole motor with no starting switch o	e
motor housing for cooler motor which extends the life	
ee operation	
rcury-free, high-temperature mechanical float switch	
back models available but can be operated manually by	

HP33/I	HP50	HTS
Ideal for applications wit small diameter sump pit	th s HYDROMATIC	Submersible s designed for h temperatures
Typical Application	Basement sumps, dewatering, light effluent, water transfer	Typical Application
Capacities	up to 62 GPM (235 LPM)	Capacities
Heads	up to 32 ft. (9.8 m)	Heads
Electrical	1/3 HP, 115V, 1ø, 9.8A, 60Hz; 1/2 HP, 115V, 1ø, 12A, 60Hz;	Electrical
Motor	1/3 or 1/2 HP shaded pole with thermal overload, 1550 RPM	
Continuous Liquid Temperature	130°F (54°C)	Continuous Liquid I
Minimum Recommended Sump Diameter	10" (25.4 cm)	Minimum Recommo Sump Diameter
Automatic Operation	2-Pole float switch	Automatic Operatio
Materials of Construction	Cast iron	Materials of Constr
Impeller	Thermoplastic, vortex type	Impeller
Discharge Size	1-1/2" NPT (38.1 mm)	Discharge Size
Solids Handling	1/2" (12.7 mm)	Solids Handling
Power Cord	10' or 20', 16/3, SJTW-A, SJTW	Power Cord

Submersible sump pump designed for high temperatures up to 1949	F
Typical Application	Boiler blow-down, condensate pits and hot water transfer
Capacities	up to 45 GPM (170 LPM)
Heads	up to 21 ft. (6.4 m)
Electrical	115V, 1ø, 12.0 FLA, 60Hz
Motor	1/3 HP shaded pole with thermal overload. 1550 RPM
Continuous Liquid Temperature	194°F (90°C) with switch; 200°F (93°C) manual
Minimum Recommended Sump Diameter	18" (457.2 mm)
Automatic Operation	Wide-angle float switch (manual available)
Materials of Construction	Cast iron
Impeller	Cast iron
Discharge Size	1-1/2" NPT (38.1 mm)
Solids Handling	3/4" (19.1 mm)

PANEL NAME		VOLT	AGEINFO	RMATION	1			F	ANEL INFOR	MATION			F	EEDER INFORMATION
PLN-GB7	VOLT	FAGE	-	208/120	V		BUSS	Ļ		200	A		FROM	DPLN-GB
RECESSED	PH	ASE	-	3		- 1	MAIN/ML	0	MAIN BREAKER - 150A		TYPE	TYPE NORMAL		
GROUND FLOOR	W	RE		4		A	AIC RATING 10.000			00		SIZE	SEE RISER ON E601	
LOCATION/ITEM	LOAD WATTS	NOTES	WIRE	COND	BREAKER	СКТ	PHS	CKT	BREAKER	COND	WIRE	NOTES	LOAD WATTS	LOCATION/ITEM
RCPT LAB 009	540		#12	3/4"	20A-1P	1	A	2	20A-1P	3/4"	#12		540	RCPT LAB 011
RCPT LAB 009	540		#12	3/4"	20A-1P	3	B	4	20A-1P	3/4"	#12	1	540	RCPT LAB 011
RCPT LAB 009	540		#12	3/4"	20A-1P	5	C	6	20A-1P	3/4"	#12	0	540	RCPT LAB 011
RCPT LAB 009	540		#12	3/4"	20A-1P	7	A	8	20A-1P	3/4"	#12		540	RCPT LAB 011
RCPT LAB 009	540		#12	3/4"	20A-1P	9	B	10	20A-1P	3/4"	#12		540	RCPT LAB 011
RCPT LAB 009	1000		#10	3/4"	30A-1P	11	C	12	30A-1P	3/4"	#10		1000	RCPT LAB 011
RCPT LAB 009	1000		#10	3/4"	30A-1P	13	A	14	30A-1P	3/4"	#10		1000	RCPT LAB 011
SPC RCPT LAB 009	1200		#10	3/4"	30A-2P	15	B	16	30A-2P	3/4"	#10		1200	SPC RCPT LAB 011
	1200			1	181524124	17	C	18				-	1200	
SPC RCPT LAB 009	1200		#10	3/4"	30A-2P	19	A	20	30A-2P	3/4"	#10	S	1200	SPC RCPT LAB 011
	1200					21	8	22					1200	
FUME HOOD 000H	400		#12	3/4"	20A-1P	23	C	24	20A-1P	3/4"	#12		400	EM SHWR
FUME HOOD 000H	400		#12	3/4"	20A-1P	25	A	26	20A-1P					SPARE
RCPT LAB 000H	540		#12	3/4"	20A-1P	27	B	28	20A-1P				1	SPARE
RCPT LAB 000H	540		#12	3/4"	20A-1P	29	C	30	20A-1P					SPARE
RCPT LAB 000H	540		#12	3/4"	20A-1P	31	A	32	20A-1P					SPARE
SPARE	- S - S		-	÷	20A-1P	33	B	34	20A-1P			12	3	SPARE
SPARE	10			84	20A-1P	35	C	36	20A-1P		8		0	SPARE
SPARE			-		20A-1P	37	A	38	20A-1P			1		SPARE
SPARE			0		20A-1P	39	B	40	20A-1P				1	SPARE
ODADE.					20A-1P	41	C	42	20A-1P					SPARE
SPARE														

• additional load of a sump pump

(Const. DWGs Courtesy of Stantec) (Equation Courtesy of Jeremy Feath) (Literature Courtesy of Hydromatic)

Level o Panelboards have the capacity to handle the

- Analysis 1: Clean Room Coordination Background **Project Organization Results Coordination Results**
- Analysis 2: Roof System Redesign Background Schedule Results Cost Comparison Structural Breadth
- Analysis 3: Underground Spring Background Results Mechanical Breadth
- Analysis 4: FM Information Delivery
- Final Recommendations
- Acknowledgements

Analysis 4 CM to FM Information Delivery

Summary

University Engineering Building *Mid-Atlantic University, United States*

M TELLY

Understanding the impact and value of enterprise asset management

Implementing IBM Maximo Asset Management to enable your smarter physical infrastructure

Key Takeaways:

excess

• Necessary to weed out critical information from

• It's not always the information itself, but the means of using that information for O&M

Analysis 1: Clean Room Coordination Backaround **Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results **Cost Comparison** Structural Breadth

Analysis 3: Underground Spring Background Results Mechanical Breadth

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Jeremy Feath **Construction** Option

Final Recommendations

Analysis 1: Clean Room Coordination:

- *Reorganize project team chart to reflect new* contractual obligations for Hodess
- Creation of Coordination Schedule to maximize early coordination for the Clean Room
- **Recommendation: PROCEED**

Analysis 2: Roof System Redesign:

- Replace Fully-Adhered TPO with InvisiWeld TPO system.
- Saves 20+ working days on schedule
- Saves \$27,000 in costs
- **Recommendation: PROCEED**

University Engineering Building *Mid-Atlantic University, United States*

Analysis 3: Underground Spring:

- Add Waterproofing Membrane in addition to the sump pump solution of the project team.
- Schedule Impact is negligible
- Cost Impact, while substantial, can be offset by Roof savings
- **Recommendation: PROCEED**
- *Outline created to help Owners/FM incorporate* technologies
- Means of using information more important than information at times
- **Recommendation: PROCEED**

(Courtesy of Owner)

Analysis 4: CM – FM Information Delivery:

Analysis 1: Clean Room Coordination Background **Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results **Cost Comparison** Structural Breadth

Analysis 3: Underground Spring Background Results Mechanical Breadth

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Jeremy Feath Construction Option

A Special Thanks to ...

Massaro

Acknowledgements

University Engineering Building Mid-Atlantic University, United States

AE Faculty & Staff Dr. Craig Dubler Dr. Ed Gannon Todd Bookwalter **Bud Curry** The University Project Team Massaro Project Team Friends & Family

(Courtesy of Stantec)

Analysis 1: Clean Room Coordination Backaround **Project Organization Results Coordination Results**

Analysis 2: Roof System Redesign Background Schedule Results **Cost Comparison** Structural Breadth

Analysis 3: Underground Spring Background Results Mechanical Breadth

Analysis 4: FM Information Delivery

Final Recommendations

Acknowledgements

Jeremy Feath Construction Option

Analysis 1: Clean Room Coordination:

- *Reorganize project team chart to reflect new* contractual obligations for Hodess
- Creation of Coordination Schedule to maximize early coordination for the Clean Room
- **Recommendation: PROCEED**

Analysis 2: Roof System Redesign:

- Replace Fully-Adhered TPO with InvisiWeld TPO system.
- Saves 20+ working days on schedule
- Saves \$27,000 in costs
- **Recommendation: PROCEED**

Questions

University Engineering Building *Mid-Atlantic University, United States*

(Courtesy of Owner)

Analysis 3: Underground Spring:

- Add Waterproofing Membrane in addition to the sump pump solution of the project team.
- Schedule Impact is negligible
- Cost Impact, while substantial, can be offset by Roof savings
- **Recommendation: PROCEED** <u>Analysis 4: CM – FM Information Delivery:</u>
- *Outline created to help Owners/FM incorporate* technologies
- Means of using information more important than *information at times*
- **Recommendation: PROCEED**